


# Fluid Management in Critical Care



Amir Kazory, MD, FASN, FACC

Professor of Medicine
Division of Nephrology, Hypertension, and Renal Transplantation
University of Florida

#### Outline

- 1- Principles of Fluid Management in ICU
- 2- Strategies (how much? When?)
- 3- Outcome (can we hurt the patients?)
- 4- Impact on the Kidney (the nephrologist in me!)



#### Illustrative Case

A 62-year-old woman with COVID-19 is admitted to the ICU with high-grade fever, multifocal opacities on chest x-ray, and respiratory failure requiring intubation. Despite an initial 2-L (30 mL/kg) bolus of crystalloid, the patient develops progressive hypotension.

The patient's mean arterial pressure (MAP) is 45 mm Hg, central venous pressure (CVP) is 11 mm Hg, and central venous oxygen saturation (ScVO2) is 89%. Arterial lactate level is 10.2 mmol/L, and urine output is 10 mL/h.

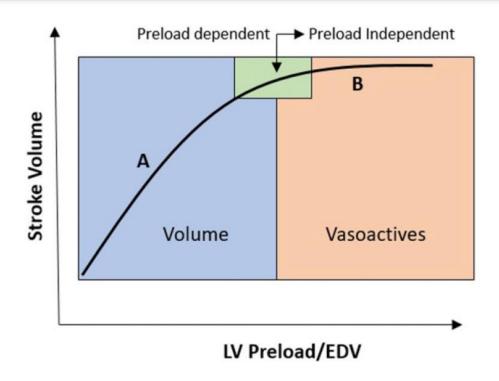


#### Illustrative Case

# Which of the following statements is correct regarding the next best step in management?

- (a) The next best option is to initiate norepinephrine and perform a passive leg raise to assess whether she is likely to respond to additional fluids.
- (b) The next best option is to initiate dopamine treatment.
- (c) The next best option is to continue to administer IV fluids until CVP is ≥12 cm H2O.
- (d) Because of the dangers associated with volume overload, the patient should not have been treated with a 30 mL/kg fluid bolus and should receive no further fluids.
- (e) Because ScVO2 is >70%, oxygen delivery to her tissues is adequate and therefore no additional treatment is warranted.

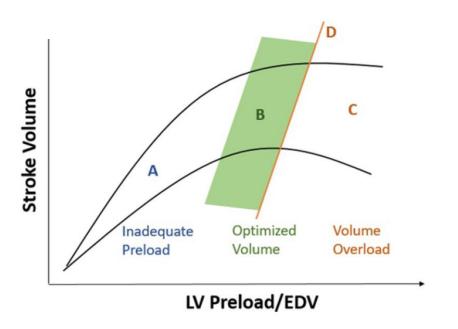


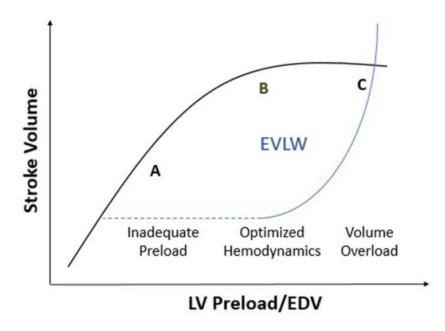

# Treatment of Shock

4 phases

36-48 hrs 0-6 hrs 6-36 hrs >48 hrs Salvage Optimization Stabilization De-escalation Obtain a Provide Wean from Provide organ Phase Focus minimal adequate vasoactive support acceptable oxygen agents availability blood pressure Achieve a Perform Minimize Optimize negative complications lifesaving cardiac output, fluid balance Svo<sub>2</sub>, lactate measures




## Volume Optimization: a Clinical Challenge




The transition point from volume resuscitation to vasopressor support in treatment for sustained hypotension



## Volume Optimization: a Clinical Challenge





Optimized volume is achieved at different levels of stroke volume and end-diastolic volume (EDV) for each patient

Once beyond point B and into C, improvement in cardiac output is lost, and extravascular lung water (EVLW) increases



#### Assessment of Volume Status

Physical exam: vital signs, perfusion, [POCUS]

Lab studies:

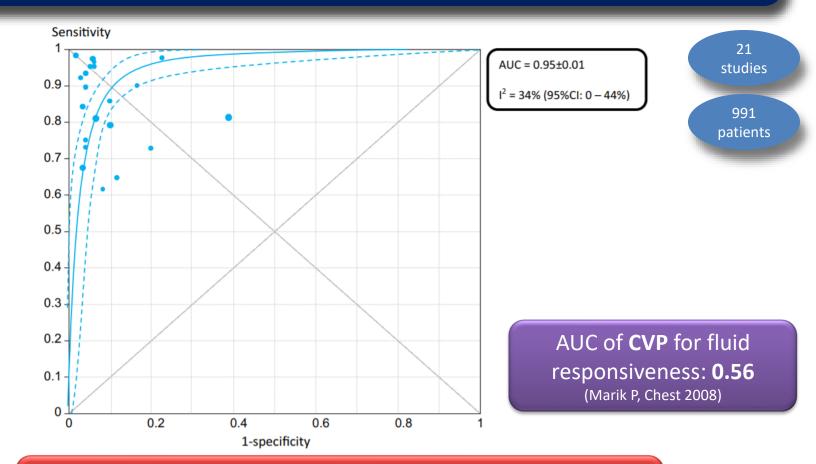
lactate, BNP

There is no Consensus Approach

- Diagnostic maneuvers:
  - passive straight-leg raise, IVF challenge
- Non-invasive monitoring: lung U/S, IVC U/S, PPV, SVV, RBV/Hct
- Invasive monitoring:

CO, PCWP

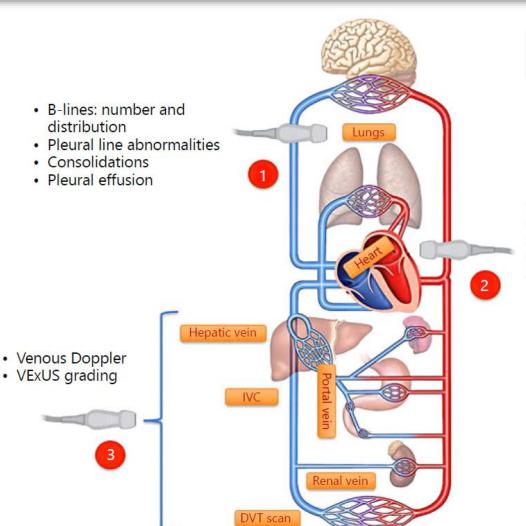



#### **Assessment of Volume Status**

| Method                                    | Invasive or noninvasive                                                                             | Static or<br>dynamic | Assess fluid responsiveness | Comments                                                                                                                                                            |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Historical findings                       | Noninvasive                                                                                         | Static               | No                          | Of limited value with poor correlation with invasive pressure measurements                                                                                          |
| Physical exam                             | Noninvasive                                                                                         | Static and dynamic   | Yes                         | Of limited value but serial examinations may detect changes in organ perfusion                                                                                      |
| Chest radiograph                          | Noninvasive                                                                                         | Static               | No                          | Requires use of standardized measures of vascular pedicle width and cardiothoracic ratio. Serial chest X-ray may be helpful in determining effects of fluid therapy |
| Central venous pressure                   | Invasive                                                                                            | Static               | No                          | Poor correlation with fluid responsiveness                                                                                                                          |
| Pulmonary capillary wedge pressure        | Invasive                                                                                            | Static               | No                          | Poor correlation with fluid responsiveness                                                                                                                          |
| Echocardiogram                            | Noninvasive                                                                                         | Static               | No                          | Single measures of cardiac chamber volume hard to assess.<br>Serial measures may be helpful                                                                         |
| Stroke volume or pulse pressure variation | Invasive (pulse oximeter method in noninvasive)                                                     | Dynamic              | Yes                         | Requires sedated, mechanically ventilated patient                                                                                                                   |
| Esophageal doppler                        | Invasive                                                                                            | Dynamic              | Yes                         | Not useful for continuous measurements                                                                                                                              |
| Vana sava diameter                        | Maninuaciua                                                                                         | Dunamia              | Vac                         | Body habitus dependent                                                                                                                                              |
| Passive leg raising                       | Noninvasive (bioreactance<br>end-tidal CO <sub>2</sub> )<br>Invasive (FloTrac or PiCCC on<br>LiDOO) | Dynamic              | Yes                         | Unreliable with intra-abdominal hypertension                                                                                                                        |
| End-expiratory occlusion                  | Passive leg raising                                                                                 | Dynamic              | Yes                         | Requires 15-s end-expiratory occlusion                                                                                                                              |
| Bioimpedance                              | Noninvasive                                                                                         | Static               | No                          | Not able to assess intravascular volume                                                                                                                             |

**Key Concept: Fluid Responsiveness** 




#### Passive Leg Raising

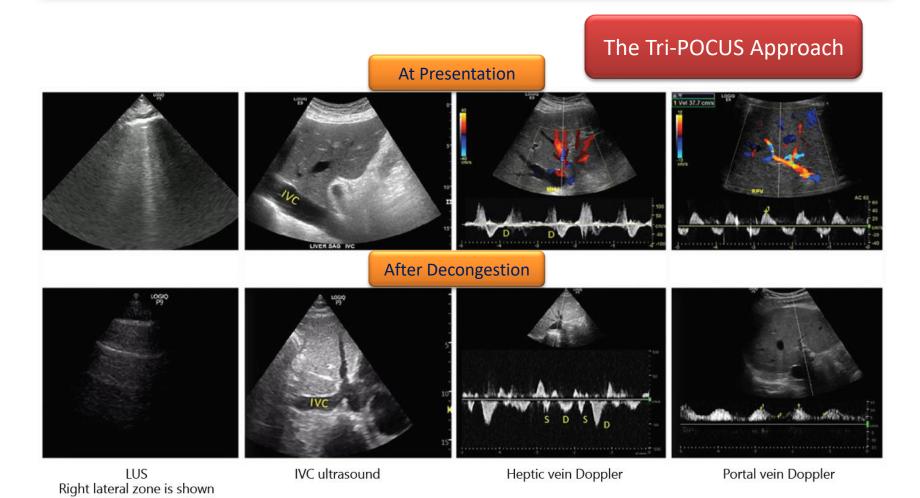


PLR-induced changes in CO reliably predict the response of CO to volume expansion in adults with acute circulatory failure.



#### Assessment of Volume Status




The Tri-POCUS Approach

- Pericardial effusion
- · Left ventricular ejection
- Right ventricular relative size
- · PLR and stroke volume assessment
- IVC collapsibility

- 1) Lung U/S
- 2) Focused Cardiac U/S
- 3) Venous Doppler



#### **Assessment of Volume Status**





NHLBI-ARDS Clinical Trials Network

**FACT Trial** 

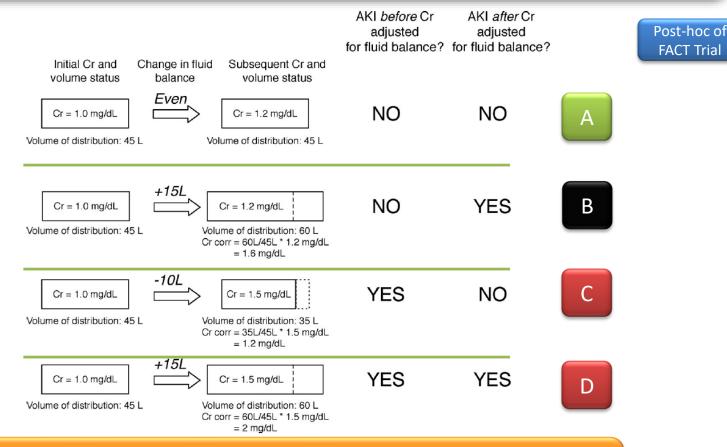
1000 patients

| Measured intravascular pressure (mm Hg) |                     | MAP                                           | MAP ≥60 mm Hg without vasopressors  (except dopamine ≤5 µg/kg/min)        |                                                                      |                                                                                         |                                                                         |                                                                                         |                                                                         |
|-----------------------------------------|---------------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| CVP PAOP <sup>G</sup>                   |                     | <60 mm Hg<br>or a need for<br>any vasopressor | Average urinary output <0.5 ml/kg/hr Average urinary output ≥0.5 ml/kg/hr |                                                                      |                                                                                         |                                                                         |                                                                                         |                                                                         |
|                                         |                     |                                               | (except dopamine<br>≤5 µg/kg/min);<br>consider cor-                       | Ineffective<br>Circulation                                           | Effective<br>Circulation                                                                | Ineffective<br>Circulation                                              | Effective<br>Circulation                                                                |                                                                         |
| Conservative strategy                   | Liberal<br>strategy | Conservative<br>strategy                      | Liberal re                                                                | rectable causes<br>of shock first                                    | <2.5 liters/min/m²<br>or cold, mottled<br>skin with capillary-<br>refilling time >2 sec | ≥2.5 liters/min/m² or absence of criteria for ineffec- tive circulation | <2.5 liters/min/m²<br>or cold, mottled<br>skin with capillary-<br>refilling time >2 sec | ≥2.5 liters/min/m² or absence of criteria for ineffec- tive circulation |
|                                         | Range 1             |                                               | 1 Vasopressor <sup>F</sup><br>Fluid bolus <sup>F</sup>                    | 3 KVO IV<br>Dobutamine <sup>A</sup><br>Furosemide <sup>B,1,2,4</sup> | 7 KVO IV<br>Furosemide <sup>B,1,2,4</sup>                                               | 11 KVO IV<br>Dobutamine <sup>A</sup><br>Furosemide <sup>B,1,3,4</sup>   | 15 KVO IV<br>Furosemide <sup>B,1,3,4</sup>                                              |                                                                         |
| >13                                     | >18                 | >18                                           | >24                                                                       |                                                                      | rurosemide                                                                              |                                                                         | Furosemide                                                                              |                                                                         |
|                                         | Range 2             |                                               |                                                                           | 4 KVO IV<br>Dobutamine <sup>A</sup>                                  | 8 KVO IV<br>Furosemide <sup>B,1,2,4</sup>                                               | 12 KVO IV<br>Dobutamine <sup>A</sup>                                    | 16 KVO IV<br>Furosemide <sup>B,1,3,4</sup>                                              |                                                                         |
| 9–13                                    | 15-18               | 13-18                                         | 19–24                                                                     |                                                                      |                                                                                         |                                                                         |                                                                                         |                                                                         |
|                                         | Rar                 | ige 3                                         |                                                                           | 2 Fluid bolus <sup>F</sup><br>Vasopressor <sup>F</sup>               | 5 Fluid bolus <sup>C</sup>                                                              | 9 Fluid bolus <sup>C</sup>                                              | 13 Fluid bolus <sup>C</sup>                                                             | 17 Liberal<br>KVO IV                                                    |
| 4–8                                     | 10-14               | 8-12                                          | 14-18                                                                     |                                                                      |                                                                                         |                                                                         |                                                                                         | 18 Conservative<br>Furosemide <sup>B,1,3,4</sup>                        |
|                                         | Range 4             |                                               |                                                                           | 6 Fluid bolus <sup>C</sup>                                           | 10 Fluid bolus <sup>C</sup>                                                             | 14 Fluid bolus <sup>C</sup>                                             | 19 Liberal<br>fluid bolus                                                               |                                                                         |
| <4                                      | <10                 | <8                                            | <14                                                                       |                                                                      |                                                                                         |                                                                         |                                                                                         | 20 Conservative<br>KVO IV                                               |



| NHLBI-ARDS Clinical Trials Netw               | vork                     |                     |         |
|-----------------------------------------------|--------------------------|---------------------|---------|
| Outcome                                       | Conservative<br>Strategy | Liberal<br>Strategy | P Value |
| Death at 60 days (%)                          | 25.5                     | 28.4                | 0.30    |
| Ventilator-free days<br>from day 1 to day 28† | 14.6±0.5                 | 12.1±0.5            | <0.001  |
| ICU-free days†                                |                          |                     |         |
| Days 1 to 7                                   | 0.9±0.1                  | 0.6±0.1             | <0.001  |
| Days 1 to 28                                  | 13.4±0.4                 | 11.2±0.4            | < 0.001 |
| Renal failure                                 | 21.5±0.5                 | 21.2±0.5            | 0.59    |
| Dialysis to day 60                            |                          |                     |         |
| Patients (%)                                  | 10                       | 14                  | 0.06    |
| Days                                          | 11.0±1.7                 | 10.9±1.4            | 0.96    |

| FACT Trial | 1000     |
|------------|----------|
| FACT Trial | patients |


|                              | Conservative | Liberal | p value |
|------------------------------|--------------|---------|---------|
| 7-day net<br>balance<br>(mL) | -136         | 6992    | <.001   |
| Shock                        | 2904         | 10,138  | <.001   |
| Non-<br>shock                | -1576        | 5287    | <.001   |

**Conservative strategy**: improvement of lung function and shorter duration of MV and ICU w/o increasing non-pulmonary organ failures



#### Recognition of AKI

AKI : Cr > 1.5fold the BL, or  $\uparrow 0.3 \text{ mg/dL}$ 



Adjustment of Serum Creatinine for Fluid Balance; Impact on Ascertainment of AKI



Recognition of AKI

| Table 3. | Multivariable | clinical | model | for | death <sup>a</sup> |
|----------|---------------|----------|-------|-----|--------------------|
|          |               |          |       |     |                    |

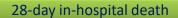
AKI before AND after adjustment for fluid

balance (group D referent to A)

Post-hoc of **FACT Trial** Odds 95% Confidence Mortality Variable Ratio Interval pAge<sup>b</sup> 1.35 1.22 - 1.50<.001Male 1.11 0.80 - 1.54.53 White race 0.570.41 - 0.80.0010.96 0.69 - 1.33.81 Fluid conservative strategy 1.02 0.74 - 1.41.90 Pulmonary artery catheter Baseline vasopressor use 1.06 0.74 - 1.51.76 Baseline creatinine<sup>c</sup> 0.980.81 - 1.17.81 Acute lung injury secondary to infection 1.24 0.85 - 1.83.27Acute Physiology and Chronic Health 1.26 1.19 - 1.34< .001Evaluation III score<sup>d</sup> No AKI before adjustment; AKI after adjustment 2.09 1.19 - 3.67.01 В for fluid balance (group B referent to A) AKI before adjustment; no AKI after adjustment 1.170.45 - 3.02.75 for fluid balance (group C referent to A)

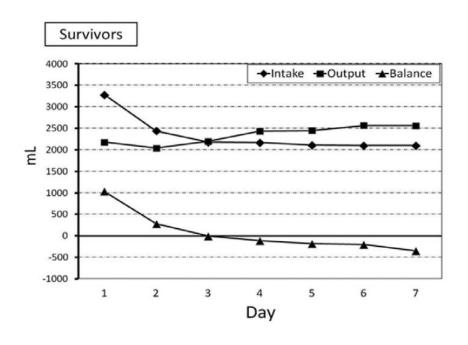
3.16

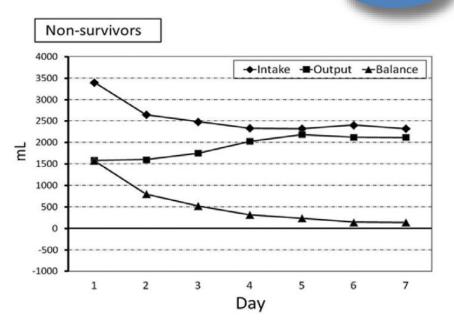
2.04 - 4.87


Increased mortality in patients without apparent AKI (AKI only after adjustment for fluid balance)



< .001

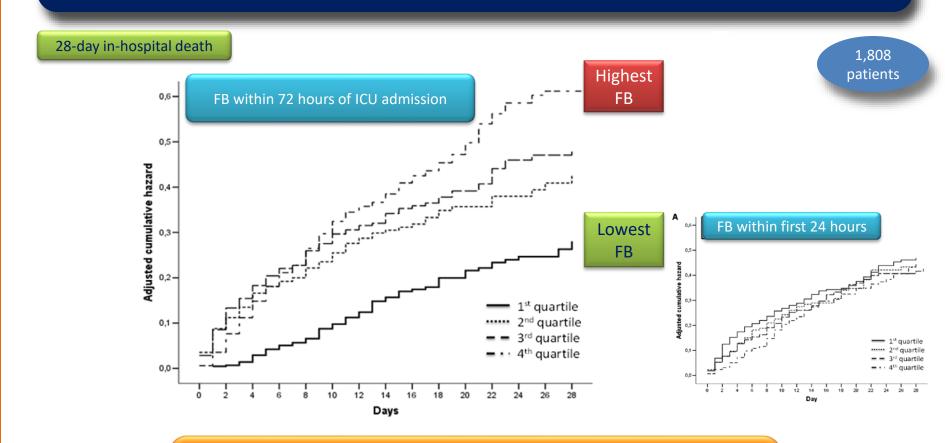

D


## Fluid Balance and Mortality





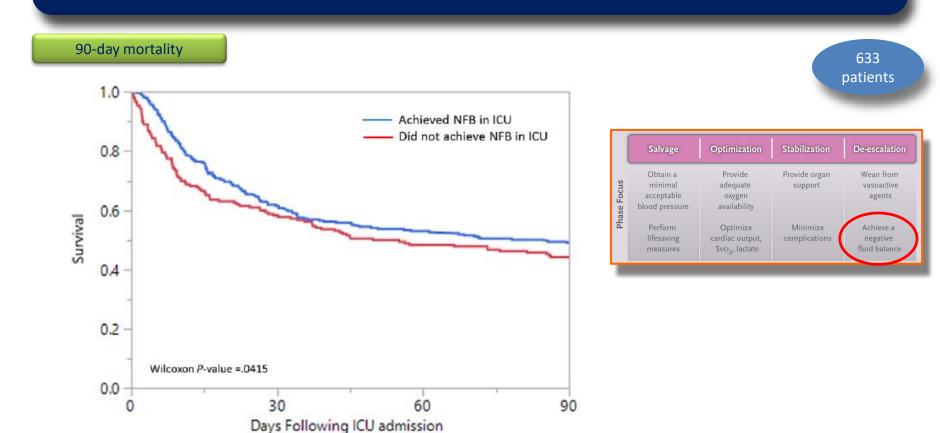
1,808 patients






Survivors: FB (-) at day 3; not in the Non-S Difference in FB is due to Output, not Intake



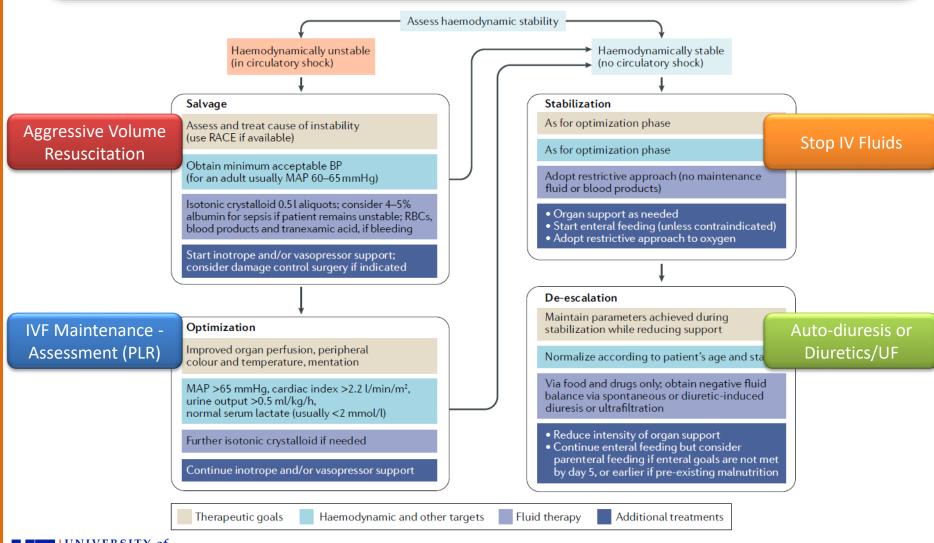

## Fluid Balance and Mortality



Higher cumulative fluid balance at day 3 (but not in the first 24 hours); higher mortality

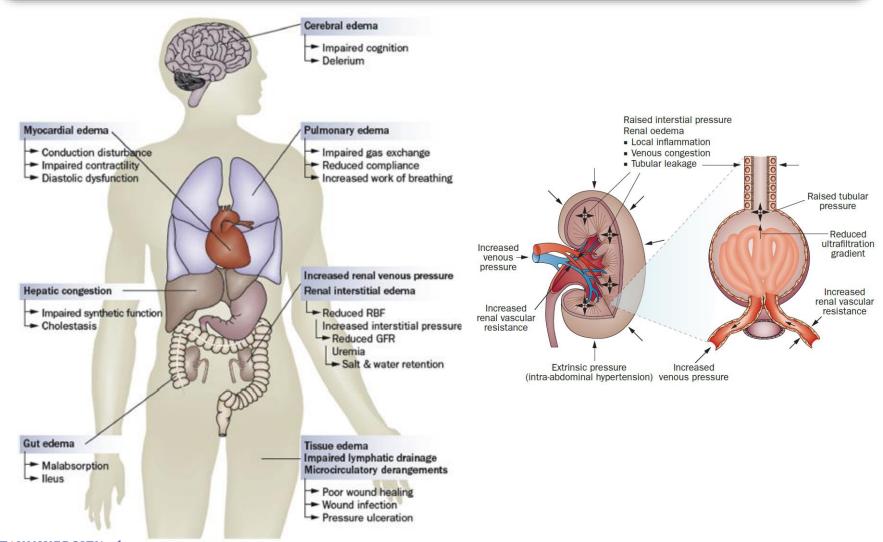


## Fluid Balance and Mortality




Higher mortality rate if no Negative Fluid Balance in the ICU despite lower illness severity scores

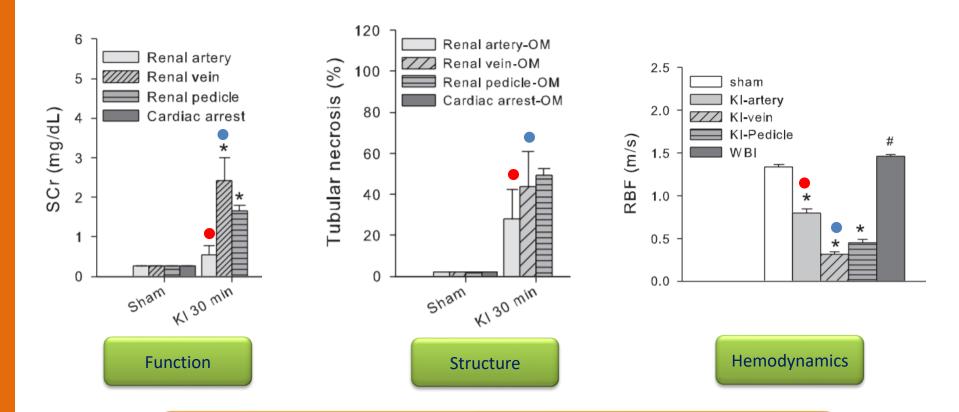



# Fluid Management in Shock

4 phases






#### Volume Overload: Detrimental Effects

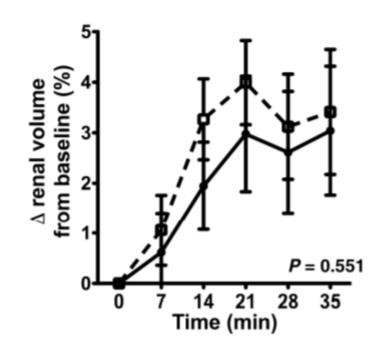




# Volume Overload: Kidney in the Spotlight

Murine Model




Acute Renal Venous obstruction; more detrimental than Arterial Occlusion



#### Volume Overload: Kidney in the Spotlight

**Healthy Volunteers** 

12 adults



→ Plasma-Lyte 148

-**-** 0.9% Saline

Infusion of 2 liters of IV fluid over 1 hour; increase in kidney volume by 3-4% (?edema)

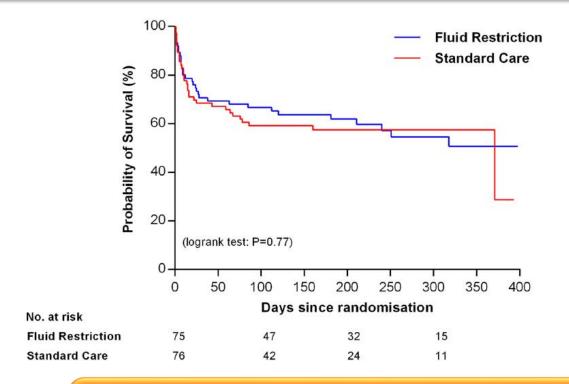


# Fluid Resuscitation Strategies and the Kidney

Conservative vs. Liberal Approach to fluid therapy of Septic Shock in Intensive Care (CLASSIC)

151 patients

| Outcome                                         | Fluid restriction group (n = 75)     | Standard care<br>group (n = 76)      | Fluid restriction vs. standard care (95 % ( ) <sup>a</sup> | <i>P</i> value      |
|-------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------------|---------------------|
| Co-primary outcome measures                     |                                      |                                      |                                                            |                     |
| Volumes of resuscitation fluid (mL)             |                                      |                                      |                                                            |                     |
| First 5 days after randomisation                | 500 (0 to 2500) [1687]               | 2000 (1000 to 4100) [2928]           | -1241 (-2043 to -439)                                      | <0.001 <sup>b</sup> |
| During ICU stay after randomisation             | 500 (0 to 3250) [1992]               | 2200 (1000 to 4750) [3399]           | -1407 (-2358 to -456)                                      | <0.001 <sup>b</sup> |
| Secondary outcome measures                      |                                      |                                      |                                                            |                     |
| Total fluid input (mL) <sup>c</sup>             |                                      |                                      |                                                            |                     |
| First 5 days after randomisation                | 12,411 (5518 to 17,035) [11,777]     | 13,687 (7163 to 17,082) [12,597]     | -820 (-2968 to 1329)                                       | 0.45                |
| During ICU stay after randomisation             | 18,291 (5518 to 34,045) [21,459]     | 16,970 (7163 to 29,889) [23,495]     | -2036 (-10,920 to 6848)                                    | 0.65                |
| Cumulated fluid balance (mL)                    |                                      |                                      |                                                            |                     |
| First 5 days after randomisation                | 1752 (-1153 to 3758) [2141]          | 2680 (407 to 5114) [3289]            | -1148 (-2531 to 235)                                       | 0.06 <sup>b</sup>   |
| During ICU stay after randomisation             | 1923 (-1964 to 5415) [2,032]         | 2014 (-168 to 4678) [2507]           | -475 (-2254 to 1304)                                       | 0.60                |
| Serious adverse reactions <sup>d</sup>          |                                      |                                      |                                                            |                     |
| Number of reactions per day during the ICU stay | 0.14 (0 to 0.50) [0.37] <sup>e</sup> | 0.15 (0 to 0.52) [0.33] <sup>e</sup> | NA                                                         | 0.85 <sup>b</sup>   |


Restrictive strategy (bolus by indication) led to lower amount of administered fluid

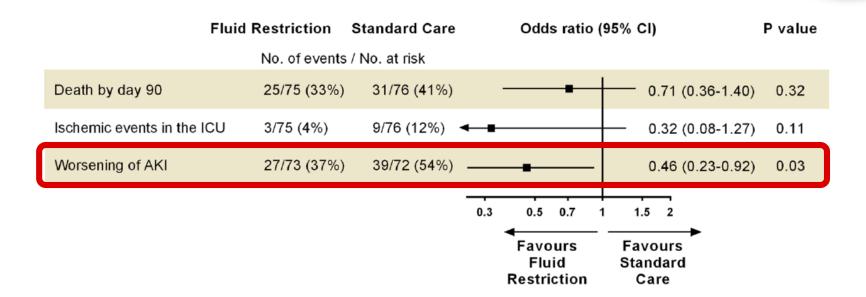


# Fluid Resuscitation Strategies and the Kidney

Conservative vs. Liberal Approach to fluid therapy of Septic Shock in Intensive Care (CLASSIC)

151 patients




Similar mortality rate at latest follow up



# Fluid Resuscitation Strategies and the Kidney

Conservative vs. Liberal Approach to fluid therapy of Septic Shock in Intensive Care (CLASSIC)

151 patients



Development of AKI, or worsening of AKI (KDIGO stage) after randomization; more often in standard care



# Fluid Balance and Kidney

| Reference                                               | Study type                  | Population                                  | n     | Average fluid<br>balance in<br>less-positive<br>group | Average fluid<br>balance in<br>more-positive<br>group | Renal<br>function<br>measure             | Renal outcome<br>with more-<br>restrictive fluid<br>balance strategy | Principal outcome<br>with more-restrictive<br>fluid balance strategy     |
|---------------------------------------------------------|-----------------------------|---------------------------------------------|-------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| ARDS Clinical<br>Trials Network<br>(2006) <sup>88</sup> | Multicenter<br>RCT          | ARDS                                        | 1,000 | –136 ml<br>on day 7                                   | +6,992 ml<br>on day 7                                 | Need for RRT;<br>change in<br>creatinine | No difference                                                        | Shorter duration of ventilation and ICU stay                             |
| Martin <i>et al.</i> (2005) <sup>86</sup>               | Single-center<br>RCT        | Mixed ALI                                   | 40    | -5,480 ml<br>on day 5                                 | –1,490 ml<br>on day 5                                 | Change in creatinine                     | No difference                                                        | Improved oxygenation                                                     |
| Martin et al.<br>(2002) <sup>85</sup>                   | Single-center<br>RCT        | ALI after<br>trauma                         | 37    | –3,300 ml<br>on day 5                                 | +500 ml<br>on day 5                                   | Change in creatinine                     | No difference                                                        | Improved oxygenation                                                     |
| Mitchell et al. (1992) <sup>127</sup>                   | Single-center<br>RCT        | Mixed ICU<br>needing PAC                    | 102   | +142 ml                                               | +2,239ml                                              | Change in creatinine                     | Small rise in<br>creatinine                                          | Shorter duration of ventilation and ICU stay                             |
| Bouchard et al. (2009) <sup>25</sup>                    | Retrospective observational | Mixed ICU with<br>AKI                       | 542   | <10% rise                                             | >10% rise                                             | Dialysis<br>independence                 | Improved                                                             | Decrease in mortality                                                    |
| Payen et al. (2008) <sup>6</sup>                        | Retrospective observational | Mixed ICU with or without AKI               | 3,147 | –1,000 ml                                             | +3,000ml                                              | Renal SOFA<br>score                      | Improved                                                             | Decrease in mortality in patients with AKI                               |
| Vidal et al. (2008) <sup>72</sup>                       | Prospective observational   | Mixed ICU with<br>elevated or<br>normal IAP | 83    | +5,000 ml                                             | +9,000 ml                                             | Renal SOFA<br>score                      | Improved                                                             | Normal IAP associated<br>with less organ failure<br>and shorter ICU stay |
| Adesanya et al. (2008) <sup>128</sup>                   | Retrospective observational | Surgical ICU                                | 41    | +5 kg                                                 | +8.3 kg                                               | Change in creatinine                     | No difference                                                        | Shorter duration of ventilation and ICU stay                             |
| McArdle et al. (2007) <sup>87</sup>                     | Retrospective observational | Surgical ICU                                | 100   | +7,500 mI                                             | +10,000 ml                                            | Change in creatinine                     | No difference                                                        | Decrease in postoperative complications                                  |
| Arlati et al.<br>(2007) <sup>99</sup>                   | Prospective observational   | Burns ICU                                   | 24    | +7,500 ml                                             | +12,000 ml                                            | Urine output                             | No difference                                                        | Decrease in organ dysfunction score                                      |

<sup>\*</sup>See Supplementary Information online for systematic search strategy. Abbreviations: AKI, acute kidney injury; ALI, acute lung injury; ARDS, acute respiratory distress syndrome; IAP, intra-abdominal pressure; ICU, intensive care unit; PAC, pulmonary artery catheter; RCT, randomized, controlled trial; RRT, renal replacement therapy; SOFA, sequential organ failure assessment.



# Fluid Management Guidelines

Fluid Stewardship

**Surviving Sepsis** Campaign

**World Health** Organization

**International Fluid Academy** 

to assess - Using a c - Using cry to colloids - Balanced over unba

#### **Common Themes:**

- 1- Conservative Fluid Administration
- 2- Use of Dynamic Indices of Volume

Responsiveness

3- Early Use of Pressors

d of fluid olus of 4 stalloids

> fter fluid nctional or PLR) opressors

patients inking

n even in

ve zero fluid

guide volume administration beyond initial resuscitation.



#### Illustrative Case

A 62-year-old woman with COVID-19 is admitted to the ICU with high-grade fever, multifocal opacities on chest x-ray, and respiratory failure requiring intubation. Despite an initial 2-L (30 mL/kg) bolus of crystalloid, the patient develops progressive hypotension.

The patient's mean arterial pressure (MAP) is 45 mm Hg, central venous pressure (CVP) is 11 mm Hg, and central venous oxygen saturation (ScVO2) is 89%. Arterial lactate level is 10.2 mmol/L, and urine output is 10 mL/h.



#### Illustrative Case

# Which of the following statements is correct regarding the next best step in management?

- (a) The next best option is to initiate norepinephrine and perform a passive leg raise to assess whether she is likely to respond to additional fluids.
- (b) The next best option is to initiate dopamine treatment.
- (c) The next best option is to continue to administer IV fluids until CVP is ≥12 cm H2O.
- (d) Because of the dangers associated with volume overload, the patient should not have been treated with a 30 mL/kg fluid bolus and should receive no further fluids.
- (e) Because ScVO2 is >70%, oxygen delivery to her tissues is adequate and therefore no additional treatment is warranted.



## Take-Home Message

- ➤ There is no single tool for precise assessment of volume status; need for "combinational or dynamic" approaches
- Aggressive fluid administration is recommended at the initial phase of distributive shock (e.g. 30 ml/kg) followed by maintenance fluid only "if needed" (frequent assessment).
- A restrictive fluid strategy is recommended in the critically-ill, especially in those with rapidly expanding lung lesions (role of early de-escalation).



